Boundary rigidity for Randers metrics

نویسندگان

چکیده


 If a non-reversible Finsler norm is the sum of reversible and closed 1-form, then one can uniquely recover 1-form up to potential fields from boundary distance data. We also show rigidity result for Randers metrics where induced by Riemannian metric which rigid. Our theorems generalize results some manifolds. provide an application seismology seismic wave propagates in moving medium.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On dually flat Randers metrics

The notion of dually flat Finsler metrics arise from information geometry. In this paper, we will study a special class of Finsler metrics called Randers metrics to be dually flat. A simple characterization is provided and some non-trivial explicit examples are constructed. In particular, We will show that the dual flatness of a Randers metric always arises from that of some Riemannian metric b...

متن کامل

Boundary Rigidity and Stability for Generic Simple Metrics

Let (M, g) be a Riemannian manifold with boundary. Denote by ρg the distance function in the metric g. We consider the inverse problem of whether ρg(x, y), known for all x, y on ∂M , determines the metric uniquely. This problem arose in geophysics in an attempt to determine the inner structure of the Earth by measuring the travel times of seismic waves. It goes back to Herglotz [H] and Wiechert...

متن کامل

Randers Metrics of Scalar Flag Curvature

We study an important class of Finsler metrics — Randers metrics. We classify Randers metrics of scalar flag curvature whose S-curvatures are isotropic. This class of Randers metrics contains all projectively flat Randers metrics with isotropic S-curvature and Randers metrics of constant flag curvature.

متن کامل

Randers Metrics of Sectional Flag Curvature

A Finsler metric is of sectional flag curvature if its flag curvature depends only on the section. In this article, we characterize Randers metrics of sectional flag curvature. It is proved that any non-Riemannian Randers metric of sectional flag curvature must have constant flag curvature if the dimension is greater than two. 0. Introduction Finsler geometry has a long history dated from B. Ri...

متن کامل

Some remarks on Einstein-Randers metrics

In this essay, we study the sufficient and necessary conditions for a Randers metrc to be of constant Ricci curvature, without the restriction of strong convexity (regularity). A classification result for the case ‖β‖α > 1 is provided, which is similar to the famous Bao-Robles-Shen’s result for strongly convex Randers metrics (‖β‖α < 1). Based on some famous vacuum Einstein metrics in General R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Fennici Mathematici

سال: 2021

ISSN: ['2737-0690', '2737-114X']

DOI: https://doi.org/10.54330/afm.112492